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parameters to the calculation of the electron binding energies 
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Local exchange-correlation potential has been derived starting from the free- 
electron gas model. A b  in i t io  way of calculating the parameter  a of  the X a  
method is presented. Self-consistent and statistical exchange-correlation para- 
meters have been determined. The self-consistent parameters a have been 
used to calculate the electron binding energies of  Neon, Argon and Krypton. 
We suggest using statistical exchange-correlation parameter  in molecular 
calculations. The statistical exchange-correlation parameter  has been applied 
to study the electron binding energies of the molecules H20 and HF. It is 
shown that the electron binding energies calculated with the self-consistent 
and the statistical parameters a show agreement with the experimental values. 
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Introduction 

The density functional theory makes it possible to solve the many-body problem 
exactly. According to the Hohenberg-Kohn  theorem [1] the total energy of a 
system can be expressed as the functional of the electron density. Unfortunately, 
the exact exchange-correlation energy density and potential are not known. One 
of the most widely used approximation in the density functional theory is the 
local density approximation.  Several approximate local exchange-correlation 

* Dedicated to Professor J. Kouteck2~ on the occasion of his 65th birthday 
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potentials are applied in the frame of the local density approximation (see e.g. 
[2]). Here an ab initio self-consistent exchange potential is presented. 

The simplest form of  local density approximation is the so-called Xa  method. 
Ever since the appearance of the Xa  method [3] the way of choosing the value 
of a has been a fundamental problem of  the method. Usually the parameters 
determined by Schwarz [4] are used (Schwarz calculated parameters aHv SO that 
the total X a  energy be equal to the Hart ree-Fock total energy). Gopinathan, 
Whitehead and Bogdanovic [5] derived the exchange parameter of  the X a  method 
assuming a linear variation of the Fermi-hole density. Nevertheless, they adjusted 
their theoretical values ata so that the limiting value of ata for large atomic 
numbers be equal to the limiting value of aHF. 

In a previous paper [6] one of  the authors presented a new theoretical method 
that makes it possible to determine self-consistent parameters a. As the parameters 
a have been determined in an ab initio way, the Xa  method containing this 
parameter can be regarded an ab initio one. 

It is also possible to define the so-called statistical exchange-correlation parameter 
[7]. We believe that the statistical parameter can be especially useful in molecular 
calculations as its application will not lead to any increase in computer time. 

In order to test the self-consistent and statistical exchange-correlation parameters 
the electron binding energies have been studied in a few atoms and molecules. 

The self-consistant parameters a have been used to calculate the electron binding 
energies of Ne, Ar and Kr (the binding energy of an electron is defined as the 
energy which is needed to remove the electron from the atom). It is pointed out 
that the SCF parameters a provide electron binding energies close to the experi- 
mental ones. 

The electron binding energies of  the molecules H20 and HF have been studied. 
It seems that the statistical exchange-correlation parameter can be effectively 
applied in molecular Xa  calculations. 

Self-consistent exchange-correlation potentials 

The self-consistent and the statistical parameters a 

The starting point of the derivation of the new exchange potential is the free- 
electron gas model [8]. The exchange potential for the electrons with spin up is 

/ 3 \ 1/3 
Vx,(1) or( l ) )  , (1) 

where 

1 1 - 7  2 1+ 7 
F ( 7 )  = - +  In (2) 
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and & is the total electron density of the electrons having spin up. ~ = I/~]/I/~rl 
in the reduced momentum of the electron and EFt = kZt = (6~rpt) 1/3 is the Fermi 
energy. Averaging in the momentum space 

I" / 3 \1/3 F(rl)rl2drl 

" i  (3) V •  pt(1)) "'2 72d~q 
"01 

we get the Xa  exchange-correlation with the parameter 

{~ -, 1 ~ 1+r] } ~2 3.,12 1 
a =  ( r /3+r / ) -~(~72-1)21n ({'q }71) �9 (4) 

"ql 

Averaging over all the occupied states, that is ~7~ =0  and ~72 = 1, we obtain a 
suggested by Slater [3]. If  the averaging procedure is carried out over a thin shell 
near ke, that is, rh=ket-e/kFt, 772=1 with e--)0 we get a =2. This is the 
parameter a that was first proposed by one of the authors [9]. Certainly, the 
averaging procedure is done for a too large space in the first case and a too small 
in the second case. Between these extreme cases it is possible to introduce a new 
parameter a by the following process. On averaging over a thin shell near Fermi 
surface for a layer containing v t electrons in the unit volume, that is, 

( /2]'/1/3 
z h = ~ =  1 -  , ~/2=1, 

\ Pt/ 
we obtain 

= - - /  1 3 1 +1(r12_l)21n 1+~7 ashell(1 ) Pt 1 - 5 - q - ~ r l  ~ , (5) 
v t t  I I - v l l  

where 

vt(1 ) = u*(1)u,(1) (6) 

is the density of the electron considered. The parameter and therefore the 
exchange-correlation potential is the same for electrons with the same spin 
orbitals, i.e. for the same shell, but it is different for different shells. An analysis 
of the r-dependence of the parameters for different shells can be found in [10]. 
Denoting by ashenJ the parameter a for shell j, with another averaging process 
we get 

~"Jt J njashell (7) 
a t ( l )  Zjt nj ' 

where nj is the number of electrons in the shell j. By this procedure the same 
exchange-correlation potential is gained for the electrons with the same spin 

Vx~o)(1) = -6a(1)(--34~rP~(1)) 1/3 (8) 
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Nevertheless a t ( l )  is not a constant as it is usual in the X a  method but a function 
of the position (1). In order to compare our new potential (8) to the usual X a  
exchange-correlation potential  

Vx,~(1) = - 6 a t ( ~  Pt(1) ) 1/3 (9) 

we can take a constant parameter  a so that the mean squared deviation of Vx~t(1) 
and Vx~t(~)(1) be a minimum. It can be pointed out [7] that the function a(1)  
only slightly depends on the position vector r, there are only small deviations 
from a constant value. This fact makes it very plausible to introduce a constant 
a value. 

This a t  can be determined self-consistently. Starting from an initial parameter  a 
and exchange-correlation potential it is possible to solve the Xo~ one-electron 
equations 

{ - A 1 - 2 ~ Z + 2  I p(2) ~ui~;(1)=eitui~:(1), (10) 

where A is the Laplacian, Z is the atomic number,  eit are the X a  one-electron 
energies, u~ i, are the spin orbitals 

0(1) = pt(1)+p~(1) (al) 
is the total electron density. From the determined spin orbitals and electron 
density we can calculate the new parameter  a and potential using the expressions 
(5)-(9). With the new exchange-correlation potential the X a  one-electron 
equations are solved again. This procedure has to be carried on until self- 
consistency is attained. 

It is worthwhile mentioning that ]the Xc~ one-electron equations (10) can be 
solved with the potential (8), too, i.e. with a non-constant function at(1 ). 
Moreover one can use different exchange-correlation potentials for different spin 
orbitals, i.e. different a~he~l(1) for different shells using the expression (5). 

The main advantage oI applying a constant parameter  a in the exchange- 
correlation potential is its simplicity. Further this constant parameter  a is deter- 
mined in an ab initio self-consistent way and is denoted by ascv. 

The method presented here is a generalization of that of  Slater and G~sp{tr-Kohn- 
Sham, as it contains those as special cases. 

It is a self-contained method as there is no need of  any external to the method, 
parameter. The exchange-correlation potentials defined above can also be given 
without any reference to the parameter  a. We separated a factor a from the 
exchange-correlation potential  (8) only to compare it with the parameter  c~ of 
the original X a  method. The exchange-correlation potential (8) depends only 
on the total electron density and the one-electron densities, there is no adjustable 
parameter  in it. The parameter  a can be determined using the one-electron and 
the total electron densities (Eqs. (5)-(7)), without any adjustment. 
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This new way of'calculating self-consistent parameters can also be applied to 
molecules and solids. 

It is possible to introduce another parameter a, the so-called statistical exchange- 
correlation parameter astat [7]. In the free-electron gas model 

- ( 1 2 )  
Pt nl"' 

where n, is the number of electrons having spin up. Using expression (12) in 7, 
i.e. 

"Or = (1 - l~/x/3 , (13) 
nt/  

and putting it into expression (5), the statistical exchange-correlation parameter 

1 1 1 + ~  
Olq'stat = 2n1'{~ + (1 - r/t) + l ( 'q~-  1)2 In 1 -----~? } (14) 

is defined. The parameter astat depends only on the number of electrons. 

It has been shown [7] that the self-consistent and the statistical exchange- 
correlation parameters differ only in second or higher order terms. 

As it will be pointed out below the application of the statistical exchange- 
correlation parameter is especially useful in molecular calculations. 

Electron binding energies of  atoms calculated by the self-consistent 
exchange-correlation parameter 

The way of calculating the ionization energies and the electron binding energies 
in the Xa  method is the transition state method. According to Slater's transition 
state concept [11] the ionization energy is simple the negative of the X~ eigenvalue 
eix~ with the occupation number ni = nio-�89 for the ith orbital 

I i  = _eix~(ni 0 __1). (15) 

As a generalization of Slater's transition state method Williams, de Groot and 
Sommers [12] derived slightly more accurate ionization energies 

Ig = -�88 = 1) -le~x~(ni = I). (16) 

Tables 1-3 present the electron binding energies for Ne, Ar and Kr atoms. We 
calculated the electron binding energies with the expression (15) for the para- 
meters aHV, ascv and with the expression (16) for the parameter aSCF (energies 
are in Rydbergs). There is only a slight difference between the electron binding 
energies calculated using the expressions (15) and (16). So there is no need of 
applying the more complicated formula (16) to determine the ionization energies. 
Tables 1-3 include the experimental results and the Hartree-Fock values, too. 
Recently Brandi, Matos and Ferreira [13] have introduced the transition state 
concept into the Hartree-Fock method. Tables 1 and 2 contain their results, too. 
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Table 1. Electron binding energies of neon atom calculated by the Xa method with aHF , asc F using 
the expression (15) and with asc F using the expression (16), the Hartree-Fock theory using the 
Koopman's theorem [17], the total energy difference in the Hartree-Fock theory (ASCF) [17], and 
the transition state method [13] and experimental electron binding energies [14] subjected to the 
relativistic correction calculated by Herman and Skillman [16] (all energies are in Rydbergs) 

XoL X~ 
Transition Transition 
state state 
calculated calculated HF HF Exp 
by Eq. (15) by Eq. (16) Koopmans' HF Transition Exp (relat. 
aHF asc F a s c  v theorem ASCF state (ESCA) corr.) 

ls 64.478 64 .626  64.639 65.545 63.823 63.822 63.958 63.88 
2s 3.319 3.358 3.366 3.861 3.616 3.608 3.559 3.54 
2p 1.636 1.671 1.683 1.701 1.456 1.446 1.587 1.59 

Table 2. The electron binding energies of argon atom calculated by the Xa method with OtHF , Otsc F 
using the expression (15) and with asc F using the expression (16), the Hartree-Fock theory using 
the Koopmans' theorem [17], the total energy difference in the Hartree-Fock theory (ASCF) [17], 
and the transition state method [13] and the experimental electron binding energies [14] subjected 
to the relativistic correlation calculated by Herman and Skillman [16] (all energies are in Rydbergs) 

x a  Xct 
Transition Transition 
state state 
calculated calculated HF HF Exp 
by Eq. (15) by Eq. (16) Koopmans' HF Transition Exp (relat. 
aHF C~SC F aSC F theorem ASCF state (ESCA) corr.) 

ls 235.618 235.532 235.532 2 3 7 . 2 2 2  234.838 234.802 235.627 234.88 
2s 22.964 22 .939  22.950 24.644 23.874 23.861 23.982 23.95 
2p 18.472 18.401 18.415 19.143 18.400 18.507 18.312 18.46 
3s 2.188 2.180 2.185 2.555 2.434 2.427 2.153 2.12 
3p 1.139 1.133 1.138 1.182 1.085 1.137 1.162 1.16 

F o r  c o m p a r i s o n  E S C A  e l e c t r o n  b i n d i n g  ene rg i e s  [14] are  a lso  p r e s e n t e d .  Expe r i -  

m e n t a l  resu l t s  i n c l u d i n g  re la t iv i s t i c  c o r r e c t i o n s  c a l c u l a t e d  by  H e r m a n  a n d  

S k i l l m a n  [15] are  f r o m  S la te r  [16]. 

T h e  bes t  resul t s  fo r  the  e l e c t r o n  b i n d i n g  e n e r g i e s  are  g iven  by  the  H a r t r e e - F o c k  

A S C F  [ ! 7 ]  a n d  the  H a r t r e e - F o c k  t r a n s i t i o n  s ta te  m e t h o d .  T h e  resul t s  p r o v i d e d  

by  t~SCF a n d  aI~F o n l y  s l igh t ly  di f fer  f r o m  the  e x p e r i m e n t a l  ones .  E v e n  the  

H a r t r e e - F o c k  v a l u e s  c a l c u l a t e d  w i t h  the  K o o p m a n s '  t h e o r e m  are  n o t  so n e a r  to  

t he  e x p e r i m e n t a l  ones .  T h e  resul t s  by  aHF a re  l i t t le  c lose r  to  the  e x p e r i m e n t a l  

o n e s  t h a n  ones  c a l c u l a t e d  by  ~SCF- (But  the re  is n o t  m u c h  d i f fe rence  b e t w e e n  

them. )  W e  c a n  c o n c l u d e  tha t  the  t h e o r e t i c a l  s e l f - cons i s t en t  p a r a m e t e r s  aSCF 
p r o v i d e  i o n i z a t i o n  ene rg i e s  w h i c h  are  a l m o s t  t he  s a m e  as the  va lues  d e t e r m i n e d  
by  ~Hv a n d  b o t h  o f  t h e m  are  in a g r e e m e n t  w i t h  t he  e x p e r i m e n t a l  resul ts .  So o u r  

t h e o r e t i c a l l y  w e l l - f o u n d e d  p a r a m e t e r s  a s c F  are  as g o o d  in the  c a l c u l a t i o n  o f  
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Table 3. Tile electron binding energies of krypton atom calculated by tile Xa method with a~v , asc v 
using the expression (15) and with asc F using the expression (16), the Hartree-Fock theory using 
the Koopmans' [17] and the experimental electron binding energies [14] subjected to the relativistic 
correction calculated by Herman and Skillman [16] (all energies are in Rydbergs) 

Xo~ Xc~ 

Transition Transition 
state state 
calculated calculated HF Exp 
by Eq. (15) by Eq. ( 16 )  Koopmans' EXp (relat. 
O/HE O~sc F O~SC F theorem (ESCA) corr.) 

ls 1037.081 1036.699 1036.662 1040.332 - -  1033.89 
2s 135 .345  135.229 135.241 139.807 141.455 136.57 
2p 123 .428  123.302 123.317 126.019 124.645 123.78 
3s 19.557 19.512 19.520 21.699 21.520 21.10 
3p 15.092 15.048 15.056 16.663 15.949 15.67 
3d 7.050 7.010 7.020 7.650 6.922 7.03 
4s 1.993 1.979 1.983 2.306 2.014 1.87 
4p 0.996 0.984 0.988 1.048 1.035 1.01 

e lec t ron  b ind ing  energies  as the pa rame te r  aHF tha t  had  been  de t e rmine d  by  an 
ad jus tmen t  [4]. 

Electron binding energies o f  molecules calculated by the statistical 
exchange-correlation parameter 

A t o m i c  Xt~ ca lcu la t ions  are  genera l ly  done  by  the p a r a m e t e r  aUF. In Pr inciple ,  
the  p a r a m e t e r  aHF can also be de t e rmined  for  the molecules ,  too.  In  o rde r  to 
ca lcula te  the p a r a m e t e r  O~HF , i.e. the value  o f  a for  which  the total  X a  energy 
is equal  to the  to ta l  H a r t r e e - F o c k  energy,  one has  to know the to ta l  H a r t r e e - F o c k  
energy be fo rehand .  However ,  n o w a d a y s  the H a r t r e e - F o c k  energy is not  ava i lab le  
for  most  o f  the molecules .  This is why the a tomic  pa ramete r s  ~HF are of ten 
app l i ed  even in mo lecu l a r  calcula t ions .  In  the  MS X a me thod  [ 11] genera l ly  the 
a tomic  a~F  are used  in the so-ca l led  a tomic  spheres  and  some average of  the 
a tomic  values  O~HF is a p p l i e d  in the so-cal led  outer  and  in te ra tomic  regions.  The 
p a r a m e t e r  0.7 sugges ted  by  Baerends  and  Ros [18] is usua l ly  used  in the  DV X a  
and  L C A O  X a  calcula t ions .  On the g rounds  o f  several  mo lecu la r  X a  ca lcula t ions  
Baerends  and  Ros found  the value  o f  0.7 the  bes t  for  mo lecu l a r  ca lcula t ions .  

The se l f -consis tent  and  stat is t ical  exchange-cor re la t ion  pa rame te r s  can be a pp l i e d  
in mo lecu l a r  ca lcula t ions ,  too. As the  p a r a m e t e r  ~SCF is de t e rmined  self- 
consis tent ly ,  its a p p l i c a t i o n  will cause some increase  in the c ompu ta t i ona l  t ime. 
However ,  one  can use the  s tat is t ical  exchange-cor re l a t ion  p a r a m e t e r  in mo lecu l a r  
ca lcula t ions  wi thout  any  increase  in t ime o f  computa t ion ,  astat d e p e n d s  only  on 
the n u m b e r  o f  e lect rons  and  its value can be  di rec t ly  ca lcu la ted  by  the he lp  o f  
the fo rmulae  (13)-(14)  be fo re  carrying out  the  mo lecu la r  ca lcula t ion .  A p p l y i n g  
the s ta t is t ical  p a r a m e t e r  one can also easi ly  exp la in  [7] why the value  o f  0.7 
w o r k s  so well  for  a large var ie ty  o f  molecules .  
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Table 4. Electron binding energies of the molecule H20 (in Rydbergs) 

R. Gdsp~ir and ,~. Nagy 

LCAO Xa DV Xa XaSW LCAO MO Exp 
(OLstat) [19] [20] SCF [21] [14] 

la  1 40.472 - -  40.122 41.174 39.682 
2a 1 2.404 2.316 2.212 2.704 2.366 
1 b z 1.462 1.396 1.154 1.420 1.352 
3al 1.122 1.066 1.140 1.162 1.080 
1 b 1 1.002 0.934 1.102 1.014 0.926 

Table 5. Electron binding energies of the molecule HF (in Rydbergs) 

LCAO Xa DVXa HF Exp 
[22] [19] [23] [24] 

1~ 51.8234 - -  50.9561 51.0075 
2~ 2.7981 2.7267 3.2016 2.9142 
3~ 1.5074 1.4920 1.5361 1.4619 
1~ 1.2428 1.1980 1.3002 1.1848 

The e lec t ron  b ind ing  energies  o f  the  molecu les  H20  and  H F  have been  s tud ied  
us ing the s ta t is t ical  pa ramete r .  We have chosen  the L C A O  X a  m e t h o d  for  our  
ca lcu la t ions .  As this m e t h o d  does  not  con ta in  muffin-t in po ten t ia l ,  it can be 
cons ide red  more  a p p r o p r i a t e  for  test ca lcula t ions .  Table  4 inc ludes  the  e lec t ron 
b ind ing  energies  o f  H20.  The va lue  o f  O~stat is 0.75783. The D V X a  ca lcula t ions  
have  been  done  with the  va lue  o f  0.7 [19], while  in the MS X a  ca lcula t ions  
different  values  o f  a have been  used  in the different  mo lecu la r  regions [20]. 

Table  5 con ta ins  the e lec t ron  b ind ing  energies  o f  HF.  The L C A O  X a  ca lcula t ions  
have  been  car r ied  out  us ing the p a r a m e t e r  a = 0.75729 [22]. It is a lmos t  equal  
to the  s ta t is t ical  p a r a m e t e r  (as ta t=0.75783) .  The  value  o f  0.7 has been  app l i ed  
in the  D V X a  [19] ca lcula t ions .  

The results  p resen ted  above  demons t r a t e  tha t  the  e lec t ron  b ind ing  energies  can 
be accura te ly  p r ed i c t ed  by  the L C A O  X a  m o d e l  us ing the s tat is t ical  exchange-  
cor re la t ions  pa ramete r .  Both  the L C A O  and  DV X a  b ind ing  energies are in good  
agreement  with the exper iment .  

Conclusion 

Using ab ini t io exchange -co r re l a t ion  po ten t i a l  makes  it poss ib le  to de te rmine  the 
p a r a m e t e r  a o f  the X a  m e t h o d  in an ab  ini t io way. So the X a  m e t h o d  having 
this p a r a m e t e r  can be cons ide red  an ab ini t io one. Self -consis tent  and  stat is t ical  
exchange -co r re l a t ion  pa r ame te r s  have been  defined.  Both o f  them tu rned  out  to 
be  adequa t e  in ca lcu la t ing  e lec t ron  b ind ing  energies.  As the app l i ca t i on  of  the 
s ta t is t ical  p a r a m e t e r  will  no t  require  any  increase  in compu te r  t ime,  we suggest  
us ing  this p a r a m e t e r  in m o l e c u l a r  ca lcula t ions .  
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